Files

189 lines
6.3 KiB
Python

#!/usr/bin/env python
import os
import time
import json
import pika
import logging
import whisper
import torch
from datetime import datetime
# Configuración de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger('processor')
# Configuración de RabbitMQ
RABBITMQ_HOST = 'rabbitmq-app.whisper.svc.cluster.local'
RABBITMQ_USER = 'user'
RABBITMQ_PASS = 'password'
PROCESS_QUEUE = 'audio_process_queue'
UNIFY_QUEUE = 'text_unify_queue'
# Configuración de Whisper
WHISPER_MODEL = "base" # Opciones: "tiny", "base", "small", "medium", "large"
# Directorios
SHARED_DIR = '/app/shared'
# ID del procesador para logs
PROCESSOR_ID = os.environ.get('PROCESSOR_ID', 'unknown')
def connect_to_rabbitmq():
"""Establece conexión con RabbitMQ"""
tries = 0
while True:
try:
credentials = pika.PlainCredentials(RABBITMQ_USER, RABBITMQ_PASS)
connection = pika.BlockingConnection(
pika.ConnectionParameters(
host=RABBITMQ_HOST,
credentials=credentials,
heartbeat=600 # 10 minutos
)
)
return connection
except pika.exceptions.AMQPConnectionError:
tries += 1
logger.warning(f"Intento {tries}: No se pudo conectar a RabbitMQ. Reintentando en 5 segundos...")
time.sleep(5)
def load_whisper_model():
"""Carga el modelo de Whisper"""
# Verificar si hay GPU disponible
device = "cuda" if torch.cuda.is_available() else "cpu"
if device == "cuda":
gpu_name = torch.cuda.get_device_name(0)
logger.info(f"Procesador {PROCESSOR_ID}: GPU detectada: {gpu_name}")
else:
logger.info(f"Procesador {PROCESSOR_ID}: No se detectó GPU, usando CPU")
logger.info(f"Procesador {PROCESSOR_ID}: Cargando modelo Whisper '{WHISPER_MODEL}' en {device}...")
model = whisper.load_model(WHISPER_MODEL, device=device)
logger.info(f"Procesador {PROCESSOR_ID}: Modelo Whisper cargado correctamente")
return model
def transcribe_audio(model, audio_path):
"""Transcribe un archivo de audio usando Whisper"""
logger.info(f"Procesador {PROCESSOR_ID}: Transcribiendo {audio_path}")
# Realizar transcripción
result = model.transcribe(audio_path)
logger.info(f"Procesador {PROCESSOR_ID}: Transcripción completada para {audio_path}")
return result
def save_transcription(result, segment_info):
"""Guarda la transcripción en un archivo de texto"""
segment_id = segment_info['segment_id']
original_file_id = segment_info['original_file_id']
segments_dir = segment_info['segments_dir']
# Crear directorio para transcripciones
transcriptions_dir = os.path.join(segments_dir, "transcriptions")
os.makedirs(transcriptions_dir, exist_ok=True)
# Generar nombre para archivo de transcripción
transcription_filename = f"transcription_{segment_id:03d}_{original_file_id}.txt"
transcription_path = os.path.join(transcriptions_dir, transcription_filename)
# Guardar texto en archivo
with open(transcription_path, 'w', encoding='utf-8') as f:
f.write(result['text'])
logger.info(f"Procesador {PROCESSOR_ID}: Transcripción guardada en {transcription_path}")
return transcription_path
def send_to_unify_queue(channel, transcription_path, segment_info):
"""Envía la transcripción a la cola de unificación"""
# Preparar mensaje
message = {
**segment_info,
'transcription_path': transcription_path,
'processor_id': PROCESSOR_ID,
'processed_timestamp': datetime.now().isoformat()
}
# Publicar mensaje
channel.basic_publish(
exchange='',
routing_key=UNIFY_QUEUE,
body=json.dumps(message),
properties=pika.BasicProperties(
delivery_mode=2 # mensaje persistente
)
)
logger.info(f"Procesador {PROCESSOR_ID}: Transcripción enviada a la cola de unificación")
def callback(ch, method, properties, body):
"""Callback para procesar mensajes de la cola de procesamiento"""
try:
# Decodificar mensaje
segment_info = json.loads(body)
segment_id = segment_info['segment_id']
segment_path = segment_info['segment_path']
original_file_id = segment_info['original_file_id']
total_segments = segment_info['total_segments']
logger.info(f"Procesador {PROCESSOR_ID}: Recibido segmento {segment_id+1}/{total_segments} para {original_file_id}")
# Transcribir audio
result = transcribe_audio(model, segment_path)
# Guardar transcripción
transcription_path = save_transcription(result, segment_info)
# Enviar a cola de unificación
send_to_unify_queue(ch, transcription_path, segment_info)
# Confirmar procesamiento
ch.basic_ack(delivery_tag=method.delivery_tag)
logger.info(f"Procesador {PROCESSOR_ID}: Transcripción completada para segmento {segment_id+1}/{total_segments}")
except Exception as e:
logger.error(f"Procesador {PROCESSOR_ID}: Error procesando mensaje: {str(e)}")
# Rechazar mensaje en caso de error para reintentarlo
ch.basic_nack(delivery_tag=method.delivery_tag, requeue=True)
def main():
"""Función principal"""
global model
# Cargar modelo Whisper
model = load_whisper_model()
# Conexión a RabbitMQ
connection = connect_to_rabbitmq()
channel = connection.channel()
# Declarar colas
channel.queue_declare(queue=PROCESS_QUEUE, durable=True)
channel.queue_declare(queue=UNIFY_QUEUE, durable=True)
# Configurar prefetch count -> 1 mensaje a la vez
channel.basic_qos(prefetch_count=1)
# Configurar callback
channel.basic_consume(queue=PROCESS_QUEUE, on_message_callback=callback)
logger.info(f"Procesador {PROCESSOR_ID}: Servicio iniciado. Esperando segmentos...")
# Iniciar consumo
try:
channel.start_consuming()
except KeyboardInterrupt:
logger.info(f"Procesador {PROCESSOR_ID}: Servicio detenido")
channel.stop_consuming()
connection.close()
if __name__ == "__main__":
main()